Rujan 2011.

Fraktalna geometrija prirode

Posted in Kaos: rađanje nove znanosti, ZNANOST tagged , , , , at 9:09 pm autora/ice Magičar

James Gleick: KAOS: RAĐANJE NOVE ZNANOSTI

Najintrigantniji nusproizvod teorije kaosa svakako predstavlja fraktalna geometrija prirode koju je 1970-ih na svjetlo dana iznio Benoit Mandelbrot. On je pošao od jednostavnog razmišljanja da euklidska geometrija nije dovoljna za izražavanje složenosti prirode.

 Oblaci nisu kugle, Mandelbrot je rado govorio. Planine nisu stošci. Munja ne putuje pravocrtno.

Ima nešto doista čudno u vezi prirode. Njezini oblici nisu matematički oblici, pa opet, kao da ni matematika nije kazala svoju zadnju riječ o sebi i svojim mogućnostima izražavanja stvarnosti. Ponukan nekim bizarnim matematičkim likovima na koje je naišao u radovima svojih kolega s početka 20. stoljeća, u jednom trenutku, Mandelbrot se odlučio za proučavanje neobičnog i neuhvatljivog oblika u prirodi koji je uspješno izmicao euklidskoj geometriji: odlučio se pozabaviti, ni manje ni više, nego s „običnom“ obalnom crtom i njenom biti postavljajući sebi jedno pomalo uvrnuto pitanje.

Mandelbrot je postavio to pitanje u članku koji je postao prekretnicom u njegovu razmišljanju: “Koliko je duga obala Britanije?

Već u startu pretpostavio je odgovor: svaka je obalna crta – u određenom smislu – beskrajno dugačka. Jedan tako bizaran zaključak zahtjeva pojašnjenje. Kako se može dogoditi da nešto što u stvarnosti osjećamo potpuno konačnim (jer ako ćemo pravo, obalu Britanije koliko god da jest dugačka, možemo prepješačit u nekoj jedinici vremena i uvjerit se u njenu konačnost) u matematici se javlja kao beskrajna veličina. Tajna je u perspektivi promatrača, veli Mandelbrot. Ukoliko se započnemo spuštati u mikrosvemir obalne crte primijetit ćemo nešto neobično: u okviru zaljeva i poluototka koje zamjećujemo i golim okom, kako se mjerilom spuštamo na sve manje razmake, iskrsavat će novi zaljevi i poluotoci te nam se čini da tako možemo ići u beskraj. Posljedica ovakvog načina promatranja je neznatan ali neograničen rast obalne crte u matematičkom smislu.

Zapravo, ovu, po matematiku vrlo neugodnu situaciju, u kojoj neki nepravilni i bizarni oblici, čak i matematičke prirode, poprimaju beskrajne duljine, uočili su još neki perverzni matematičari s početka 20. stoljeća. Među njima se posebno ističe ime Helge von Koch čiji um je bio dovoljno ustrajan u svojoj perverznosti i bizarnosti da mu je uspjelo zamisliti jedan gotovo nemoguć matematički lik koji je, pak, u literaturi poznat pod prilično nevinim nazivom – Kochina pahuljica. Kako formirati Kochinu pahuljicu? Zamislimo jednakostraničan trokut i zadajmo mu ponovljivu transformaciju: na srednju trećinu svake stranice dodajmo novi jednakostraničan trokut. U prvoj iteraciji dobijemo Davidovu zvijezdu. Međutim, ponavljajući zadanu transformaciju Davidova zvijezda ubrzo će poprimiti oblik pahuljice, ali pahuljice s dosta čudnim svojstvom: svojstvom neograničenog povećavanja opsega. Što se događa?

Opišemo li oko izvornog trokuta kružnicu Kochina krivulja [koja opisuje Kochinu pahuljicu] nikad je neće prijeći. Pa ipak, sama je krivulja beskonačno dugačka, kao euklidska ravna crta produljena do rubova neograničenog svemira…

Ono što je zapravo nevjerojatno i s čim se naš um doista mora boriti da shvati jest da „svaka transformacija povećava duljinu na četiri trećine prethodne duljine“ naše bezazlene pahuljice. Opseg pahuljice doista se beskrajno povećava! James Gleick završava priču o Kochinoj pahuljici sljedećim riječima:

Ovaj paradoksalan rezultat, beskonačna duljina u konačnom svemiru, uznemiravala je mnoge matematičare na prijelazu stoljeća koji su razmišljali o ovom problemu. Kochina [pahuljica] bila je čudovišna, protivna svakom normalnom poimanju likova i – gotovo da i nije bilo potrebno reći – patološki ne nalik bilo čemu pronađenom u prirodi.

Ipak, Mandelbrot je upravo u Kochinoj pahuljici, preciznije Kochinoj krivulji vidio „grub, ali djelotvoran model obalne crte“. I ne samo to, shvatio je da se tajna njene paradoksalnosti krije u dimenzijama. Kad biste ga zapitali na koji način, zapravo, u naš život ulaze dimenzije on bi odgovorio: „u ovisnosti o motrištu“. S velike udaljenosti neka stvar se čini poput točke, jednodimenzionalna je, pa ipak, kad joj se priđe dovoljno blizu ona postaje dvodimenzionalna, a još bliže trodimenzionalna itd.. Poznato je i da teoretičari teorije struna opravdavaju svojih jedanaest dimenzija u svojoj teoriji sličnim razmišljanjem. Kažu da bi ih zamijetili čim bi im se dovoljno približili – mikroskopski se uspjeli spustiti na njihovu razinu.

Ipak nema jasne granice kada se jednodimenzionalna točka nekog predmeta u našoj percepciji pretvara u trodimenzionalno tijelo. Stoga je Mandelbrot posegnuo za nečim, uobičajenom matematičaru, vjerojatno nemogućim: ustanovio je razlomačke dimenzije, dimenzije koje je smjestio između priznatih cjelobrojnih dimenzija. Mogli ste, recimo, imati dimenziju od 1,2. Razmišljajući o Kochinoj krivulji i koristeći se matematičkim tehnikama onih istih perverznih matematičara s početka 20. stoljeća izračunao je točnu vrijednost njene dimenzije. Razmislimo malo, Kochina krivulja je malo više od crte jer zauzima prostor, ali ipak znatno manje od ravnine; Mandelbrot bi se s tim složio i zatim ponudio i točnu vrijednost  – 1,2618.  Na osnovi izračunate vrijednosti dimenzije nekog predmeta Mandelbrot je pošao dalje i na njenoj osnovi izveo novo ključno određenje: stupanj hrapavosti ili nepravilnosti nekog predmeta. U čemu je poanta? Stupanj nepravilnosti nekog predmeta upravo zbog konstantne vrijednosti njegove dimenzije ostaje postojan bez obzira na mjerilo.

Sada je već shvatio da mu je potreban naziv za te njegove uvrnute likove, dimenzije i geometriju. I tako, nastao je fraktal, opća oznaka za nepravilne oblike čiji stupanj hrapavosti ne ovisi o mjerilu.

Misaono, fraktal je način promatranja beskraja.

Osim toga, fraktalno je značilo i sebi slično.

Fraktalni ustroj prirode je izveo svoja djela tako uspješno da u većini tkiva nijedna stanica nikad nije više od tri ili četiri stanice udaljena od krvne žile. Ipak, krvne žile i krv zauzimaju malo prostora, ne više od pet posto tijela.

Svoja je otkrića Mandelbrot objavio u knjizi i više nego egzotičnog naziva Fraktali: oblik, slučaj i dimenzija. Nakon nekoliko godina ova je knjiga dobila svog proširenog i pročišćenog nasljednika u Fraktalnoj geometriji prirode za koju Gleick kaže da je „prodana u više primjeraka nego ijedna druga knjiga o višoj matematici“ i koja je, eto, danas pozajmila naslov ovom postu…

I tako, ni ovoga puta nisam uspio stići do kraja prikaza Gleickove knjige. Preostao mi je osvrt na praoca svih fraktalnih oblika – Mandelbrotov skup. Ali kako ne biste zaboravili da je ovo u svojoj biti književni blog za kraj ovog posta donosim i prigodnu „kaotičnu“ književnu crticu…

U jednom trenutku pojavio se, sam od sebe, taj znak, ili kako to uopće već nazvati. Lorenz ga je prvi ugledao, nesvjesno je poruku prenio Yorkeu, Yorke je nazvao Maya, May Ruella, Ruell Shawa, Shaw je zatim nazvao Feigenbauma, Feigenbaum dojavio Barnsleyu, a Barnsley istu poruku prenio ponovno Lorenzu. A Lorenz, taj sramežljivi meteorolog, koji nikuda nije išao bez svoje žene, zapravo inicijalni otkrivač kaosa, duboko je uzdahnuo i kazao:
– Pa, zar je moguće!?
Zatim je izišao iz svoje kuće držeći se za ruke sa suprugom i pogledao u nebo. A ono, nebo, bilo je upravo takvo kakvo bi trebalo biti, prozirno plavo i nepredvidljivo, s urednim ništavilom u svom središtu. Ovdje nije bilo riječi o nikakvim kvantnim fluktuacijama na mikrorazini i s tim u vezi, kvantne fizičare unaprijed možemo izbaciti iz cijele priče. Jedino, prema sjeveru, kao da se nešto doista neobično događalo: oblaci su ispleli čudnovate oblike koji su se Lorenzu učinili kao slova. Pa, zar je moguće? Oblaci su pred njegovim zabezeknutim pogledom ispisivali jasan i svakome razumljiv imperativ: „FILOZOFIRAJTE!“

Nije prošlo dugo, Benoit Mandelbrot se spuštao u svom razlomačkom četveropregu pozdravljajući izbezumljene znanstvenike kaosa okupljene u Lorenzovom dvorištu.
– Nemojte reći da vas nije iznenadio! – nehajno im je doviknuo.
– Ali, Benoit – zavapila je Mellisa Lorenz, Edwardova supruga  – Ovo je Božji znak. Kakve veze kaos može imati s njim?
– Zar ne vidiš da nam je poruku prenio preko oblaka, tih istih oblaka koji posjeduju fraktalnu dimenziju odnosno kad ih čovjek promatra iz aviona nisi siguran jesu li udaljeni tri ili tri hiljade metara od tebe… Možda je ovo upozorenje – tu se Mandelbrot počešao po svojoj bradi.
Edward Lorenz stajao je okrenut suncu, raširenih ruku, prstima kao dodirujući tišinu oko sebe.
– Nisam sve ovo želio, ovu popularnost, Benoit – govorio je zatvorenih očiju. – Znaš, samo sam otišao na kavu i kad sam se vratio to se dogodilo… Ne mogu povjerovati da sam sada odgovoran za događaje koji su uslijedili, da sam možda pobudio i bijes samog Njega…
– Ne pričaj gluposti – hladno je uzvratio Mandelbrot.
– Zar nitko ne zna čitati? – povikao je ostalima – „Filozofirajte!“ piše pa filozofirajmo. Možda je ovo samo upozorenje da prebrišemo svoje matematičke i fizikalne table i odamo se ponovno  filozofiranju prapočela…Možda se priroda, stvarnost, što god, ponovno čudnovato izmijenila…

A s druge strane Stvarnosti, u prostoru i vremenu Svevišnjeg, njegov pomoćnik okrećući se tamnoj prilici svoga gospodara u sjeni okuražio se dati svoj sud:
– Rekao sam vam, o Bože, da vam se ovaj Mandelbrot možda malo i suviše približio…
– Nije Kristijane – uzvrati Bog – Ali molim te, što prije razbucaj te oblake kako ne bi previše mozgali o poruci koju sam im odaslao. Složit ćemo im novu sliku prirode. Čovjeku ne smije biti dosadno.
– Kako kažete, o Bože. – skrušeno obori glavu Kristijan.
–  A sad me ostavi na miru! – naposljetku gromko a opet tiho, u svom stilu, prošapta najtajnovitija spodoba svemira.

1 komentar »

  1. […] i potvrđuju u čitavoj prirodi inteligentni dizajn… još linkova o istoj temi; https://pustopoljina.wordpress.com/20…trija-prirode/ […]


Komentiraj

Popunite niže tražene podatke ili kliknite na neku od ikona za prijavu:

WordPress.com Logo

Ovaj komentar pišete koristeći vaš WordPress.com račun. Odjava / Izmijeni )

Twitter picture

Ovaj komentar pišete koristeći vaš Twitter račun. Odjava / Izmijeni )

Facebook slika

Ovaj komentar pišete koristeći vaš Facebook račun. Odjava / Izmijeni )

Google+ photo

Ovaj komentar pišete koristeći vaš Google+ račun. Odjava / Izmijeni )

Spajanje na %s

%d bloggers like this: